Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT The International Pulsar Timing Array (IPTA)’s second data release (IPTA DR2) combines decades of observations of 65 millisecond pulsars from 7 radio telescopes. IPTA data sets should be the most sensitive data sets to nanohertz gravitational waves (GWs), but take years to assemble, often excluding valuable recent data. To address this, we introduce the IPTA ‘Lite’ analysis, where a Figure of Merit is used to select an optimal PTA data set to analyse for each pulsar, enabling immediate access to new data and preliminary results prior to full combination. We test the capabilities of the Lite analysis using IPTA DR2, finding that ‘DR2 Lite’ can be used to detect the common red noise process with an amplitude of $$A = 4.8^{+1.8}_{-1.8} \times 10^{-15}$$ at $$\gamma = 13/3$$. This amplitude is slightly large in comparison to the combined analysis, and likely biased high as DR2 Lite is more sensitive to systematic errors from individual pulsars than the full data set. Furthermore, although there is no strong evidence for Hellings-Downs correlations in IPTA DR2, we still find the full data set is better at resolving Hellings-Downs correlations than DR2 Lite. Alongside the Lite analysis, we also find that analysing a subset of pulsars from IPTA DR2, available at a hypothetical ‘early’ stage of combination (EDR2), yields equally competitive results as the full data set. Looking ahead, the Lite method will enable rapid synthesis of the latest PTA data, offering preliminary GW constraints before the superior full data set combinations are available.more » « less
-
Abstract The Australian, Chinese, European, Indian, and North American pulsar timing array (PTA) collaborations recently reported, at varying levels, evidence for the presence of a nanohertz gravitational-wave background (GWB). Given that each PTA made different choices in modeling their data, we perform a comparison of the GWB and individual pulsar noise parameters across the results reported from the PTAs that constitute the International Pulsar Timing Array (IPTA). We show that despite making different modeling choices, there is no significant difference in the GWB parameters that are measured by the different PTAs, agreeing within 1σ. The pulsar noise parameters are also consistent between different PTAs for the majority of the pulsars included in these analyses. We bridge the differences in modeling choices by adopting a standardized noise model for all pulsars and PTAs, finding that under this model there is a reduction in the tension in the pulsar noise parameters. As part of this reanalysis, we “extended” each PTA’s data set by adding extra pulsars that were not timed by that PTA. Under these extensions, we find better constraints on the GWB amplitude and a higher signal-to-noise ratio for the Hellings–Downs correlations. These extensions serve as a prelude to the benefits offered by a full combination of data across all pulsars in the IPTA, i.e., the IPTA’s Data Release 3, which will involve not just adding in additional pulsars but also including data from all three PTAs where any given pulsar is timed by more than a single PTA.more » « less
An official website of the United States government
